Context Similarity¶
- class ContextSimilarityEvaluator¶
Measures how much context has contributed to the answer’s. A higher value suggests a greater proportion of the context is present in the LLM’s response.
- Parameters:
embed_model (BaseEmbedding) – The embedding model used to compute vector representations.
similarity_mode (str, optional) – Similarity strategy to use. Supported options are “cosine”, “dot_product”, and “euclidean”. Defaults to “cosine”.
similarity_threshold (float, optional) – Embedding similarity threshold for determining whether a context segment “passes”. Defaults to 0.8.
Example
from pineflow.core.evaluation import ContextSimilarityEvaluator from pineflow.embeddings.huggingface import HuggingFaceEmbedding embedding = HuggingFaceEmbedding() ctx_sim_evaluator = ContextSimilarityEvaluator(embed_model=embedding)
- evaluate(contexts, generated_text)¶
- Parameters:
contexts (List[str]) – List contexts used to generate LLM response.
generated_text (str) – LLM response based on given context.
Example
evaluation_result = ctx_sim_evaluator.evaluate( contexts=[], generated_text="<candidate>" )